# Chiral Dioxolane Inhibitors of Leukotriene Biosynthesis: Structure-Activity Relationships and Syntheses Using Asymmetric Dihydroxylation 

Graham C. Crawley* and Malcolm T. Briggs<br>Vascular, Inflammatory and Muscular-Skeletal Research Department, Zeneca Pharmaceuticals, Alderley Park, Macclesfield SK10 4TG, United Kingdom

Received April 26, $1995^{*}$


#### Abstract

1,3-Dioxolanes have been described as chiral inhibitors of 5-lipoxygenase (5LO). In the present work, this series has been developed further to provide agents which showed comparable or superior potency in vivo to ZD2138, a methoxytetrahydropyran inhibitor of 5LO, which is currently undergoing clinical evaluation. An asymmetric synthesis was developed to these dioxolanes based on asymmetric dihydroxylation. ( $S$ )- N -Methyl-4'-[[4-(2,2,4-trimethyl-1,3-dioxolan-4-yl)thien-2-yllthiolacetanilide ( $(S)$-10d) inhibited leukotriene $\mathrm{B}_{4}\left(\mathrm{LTB}_{4}\right)$ synthesis in A23187-stimulated human whole blood in vitro with $\mathrm{IC}_{50} 0.039 \mu \mathrm{M}, 25$-fold more potent than ( $R$ )-10d. In vivo, ( $S$ )-10d inhibited $\mathrm{LTB}_{4}$ synthesis by $70 \%$ in zymosan-inflamed air pouch exudate in rat 10 h after an oral dose of $1.5 \mathrm{mg} / \mathrm{kg}$. Structure-activity relationship considerations suggested that the dioxolane and methoxytetrahydropyran series are related, a conclusion which can be supported by molecular modeling.


5 -Lipoxygenase (5LO) is the first enzyme in the biosynthesis of leukotrienes (LTs) from arachidonic acid. LTs are a family of important biological molecules. $\mathrm{LTC}_{4}$ and $\mathrm{LTD}_{4}$ are powerful bronchial spasmogens and $\mathrm{LTB}_{4}$ is a potent inflammatory mediator. Because of these properties, LTs are implicated in the pathology of a number of diseases such as asthma, rheumatoid arthritis, and inflammatory bowel disease. Extensive research has been devoted to two approaches to LT modulation, namely $\mathrm{LTC}_{4} \mathrm{LTD}_{4}$ receptor antagonism and 5LO inhibition, and both have provided agents which are in late stage clinical evaluation for the treatment of asthma..$^{1,2}$ As both spasmogenic and inflammatory LT components of asthma are addressed, a 5 LO inhibitor may produce additional clinical benefit compared with a receptor antagonist. We have developed 4 -methoxytetrahydropyrans ( $4-\mathrm{MeO}-\mathrm{THPs}$ ) that are potent and selective 5LO inhibitors from which 1 (ZD2138) and 2 (ZD7717) were chosen for clinical evaluation. ${ }^{3}$ Currently, phase II trials in asthma and rheumatoid arthritis are underway with 1.
Our research has shown ${ }^{4}$ that structural variation of 1 is possible while retaining potent inhibition of LT biosynthesis in vitro. For example (Chart 1), the 2 -quinolone ring system has been replaced by benzoxazinone (2), dihydroquinolone (3), and substituted phenyl groups (5, 6). Thiophene and thiazole, when appropriately substituted, have proved effective alternatives to the central benzene ring ( $\mathbf{7}, \mathbf{8}$ ), and thio ( $\mathbf{2}, \mathbf{3}, \mathbf{5}-\mathbf{8}$ ) and (often) sulfone (4) can replace the methyleneoxy linking group. With most of these compounds, similar inhibition to 1 was observed in vivo. A common feature of the aforementioned structures, however, is the $4-\mathrm{MeO}-$ THP, and in order to broaden the structural diversity within our collection of 5 LO inhibitors, we sought alternatives to this ring system which conferred equivalent or enhanced inhibitory potency following oral administration. Much work had been carried out to this end and a number of novel potent inhibitors in vitro discovered, but frequently these lacked the oral potency

[^0]
## Chart $1^{a}$



$5 \mathrm{R}=\mathrm{NMeCOMe} 0.03 \mu \mathrm{M}$
$6 \mathrm{R}=\mathrm{CMe}=\mathrm{NOH} 0.02 \mu \mathrm{M}$



$90.35 \mu \mathrm{M}$

${ }^{a} \mathrm{IC}_{50}$ shown are for inhibition of $\mathrm{LTB}_{4}$ synthesis in A23187stimulated human whole blood.
of 4 -MeO-THPs. Illustrative is a series of dioxolanes, ${ }^{5}$ exemplified by 9 , in which the most effective oral agents were still roughly $5-10$-fold less potent than 1 . We undertook a further evaluation of the dioxolane series in which the thiophene, thiazole, and other changes embodied in 2-8 that had proved successful for $4-\mathrm{MeO}-$ THPs were incorporated into target structures 10 and 11. This study resulted in the discovery of potent orally

## Scheme $\mathbf{1}^{\boldsymbol{a}}$


a Reagents: (a) (1) LDA, (2) S; (b) (1) LDA, (2) 2-naphthaldehyde; (c) (1) BuLi, (2) MeSSMe.
active dioxolane inhibitors of LT biosynthesis and is the subject of this report.

## Synthetic Chemistry

For the synthesis of thiophene-containing dioxolanes, we envisaged that thiol 13 would be a versatile intermediate in that reaction with bromo and iodo compounds would allow the generation of a variety of target structures (Scheme 1). Our first attempt at the synthesis of 13 involved treatment of the thiophene anion of 12, generated by LDA, with sulfur. However, no thiol product could be detected, even after reaction with LAH to reduce polysulfides. The formation of the required anion was demonstrated by the isolation of 14 as the sole product after reaction with 2 -naphthaldehyde, but disappointingly, exposure of the anion to MeSSMe gave both regioisomers 15 and 16 , each in $20-25 \%$ yield. In view of this result, we turned our attention to generating thiophene anions through lithium exchange with 2-bromothiophene derivatives (Scheme 2). Lithiation of 2,4-dibromothiophene with $n$-BuLi generated only the 2 -anion which on reaction with MeSSMe gave 18 in $74 \%$
yield. The 4 -bromo substituent of 18 was transformed using standard methods to 15 . The MeS group of 15 was cleanly demethylated by 3 equiv of MeSNa (DMF, $130^{\circ} \mathrm{C}$ ), but attempts to isolate and characterize the thiol led to extensive degradation. However, we found that crude Na thiolate could be reacted successfully with a variety of aryl halides. For example, reaction with N -methyl-4-iodoacetanilide in the presence of CuCl and $\mathrm{K}_{2} \mathrm{CO}_{3}$ gave 10d and with 4-fluoroacetophenone provided 10 i in $89 \%$ and $73 \%$ yields, respectively. 10 i was also prepared through the intermediacy of 19 whereby the thiophene substituents were introduced in the reverse order. Further elaboration of $\mathbf{1 0 i}$ furnished the oxime derivatives shown in Table 1.
For the syntheses of resolved dioxolanes, the Sharpless asymmetric dihydroxylation (AD) was employed (Scheme 3). ${ }^{6}$ The requisite thiophene alkene substrate 21 was prepared from 3-acetyl-2-bromothiophene (20) by Wittig olefination followed by lithiation and quench with MeSSMe. Treatment of alkene 21 with AD-mix- $\alpha$ or AD-mix- $\beta$ produced resolved diols ( $S$ )-22 and ( $R$ )-22 in $95 \%$ and $98 \%$ yields, respectively, and enantiomeric excesses (ees) of $\geq 98 \%$. Optical purities and absolute configurations were determined by ${ }^{1} \mathrm{H}$ NMR experiments with a chiral shift reagent and comparison with a pair of enantiomeric diols of known absolute configurations. ${ }^{7}$ Resolved thiazole diols were prepared similarly. Alkene 24, prepared by reaction of 5-lithio-2(thiomethyl)thiazole with acetone followed by dehydration, gave the diols $(R)-25$ and ( $S$ )-25 in yields of $95 \%$ and $76 \%$ with $A D-m i x-\alpha$ and AD-mix- $\beta$, respectively. ${ }^{8}$ Each diol $\mathbf{2 5}$ had an ee of $98.5 \%$. The resolved thiophene and thiazole diols were converted to target compounds using the methods described in Scheme 2. In fact, the AD routes proved so efficient and convenient that it was easier to prepare resolved compounds directly than synthesize racemates, and no racemic thiazole target compounds were synthesized.

## Biological Results and Discussion ${ }^{9,10}$

Compounds were evaluated for inhibition of LT biosynthesis in vitro using A 23187-stimulated human

## Scheme $2^{a}$


${ }^{a}$ Reagents: (a) (1) BuLi , (2) MeSSMe; (b) (1) BuLi , (2) $\mathrm{MeCOCH}_{2} \mathrm{OTHP}$; (c) $\mathrm{H}^{+}$; (d) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}, \mathrm{H}^{+}$; (e) (1) BuLi , (2) $4-\left[\mathrm{MeC}(\mathrm{OCH})_{2}\right] \mathrm{PhS}$; (f) MeSNa ; (g) ArI, $\mathrm{CuCl}, \mathrm{K}_{2} \mathrm{CO}_{3}$; (h) 4-fluoroacetophenone; (i) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{NaOAc}$; (j) (1) NaH , (2) $\mathrm{BrCH}_{2} \mathrm{CN}$; (k) $\mathrm{KHSO} 5, \mathrm{NaOAc}$. Note : capital letters in square brackets refer to the general synthetic methods indicated in Table 2 and the Experimental Section.

## Scheme $\mathbf{3}^{\boldsymbol{a}}$


${ }^{a}$ Reagents: (a) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$; (b) (1) BuLi , (2) MeSSMe ; (c) AD -mix- $\alpha$; (d) AD -mix- $\beta$; (e) (1) BuLi , (2) acetone; (f) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$.
whole blood (Table 1). The bicycles benzoxazinone and dihydro-2-quinolone, employed advantageously in $4-\mathrm{MeO}-$ THPs 2 and 3, also produced potent inhibitors when applied in the thiophene-dioxolane series, i.e., $\mathbf{1 0 c}$ ca. However, 10b with the linking group extended to $\mathrm{CH}_{2} \mathrm{~S}$ was substantially less effective. The seco-analogue of 10a, 10d, had similar potency as did the sulfonamides 10f,h. Removing the N-Me fragment from the secoamide group produces 10 i which was somewhat less potent than 10d, but the "reversed" amide 10 g had considerably reduced potency. The oxime $\mathbf{1 0 j}$ was a potent inhibitor, significantly more potent than the O-Me oxime 10k.
For routine evaluation in vivo, compounds were examined for inhibition of $\mathrm{LTB}_{4}$ synthesis in zymosaninflamed rat air pouch exudate 3 h after oral administration. Of the compounds described so far, only 10d ( $\mathrm{ED}_{50} 0.5 \mathrm{mg} / \mathrm{kg}$ ) exhibited comparable oral potency ${ }^{11}$ to 1 , and in order to be able to assess this compound fully in vivo, we prepared resolved materials. Comparison of the enantiomers of 10 d in vitro demonstrated an eudismic ratio of 25 with ( $S$ )-10d the eutomer. A similar ratio has been observed with enantiomeric 4-methoxy2 -methyltetrahydropyrans. ${ }^{12}$
With resolved intermediates now available, various derivatives of the oxime ( $S$ )-10j were prepared. In contrast to the O-Me oxime 10k, the cyanomethylated compound ( $S$ )-101 was slightly more potent than 10 j in vitro and also active in vivo ( $\mathrm{ED}_{50} 0.5 \mathrm{mg} / \mathrm{kg} \mathrm{po}$ ). The presence of the oxime provided a point of attachment by which water-solubilizing groups could be appended in attempts to enhance oral potency. For example, the $N$-morpholinoethoxy ( $(S)$-100) group was introduced,

Table 1. Inhibition of LT Biosynthesis by Compounds 10 and 11


| no. ${ }^{\text {a }}$ | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | X | $A r^{b}$ | human whole blood $\mathrm{IC}_{50}(\mu \mathrm{M})^{c}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10a | $\mathrm{NMeCOCH}_{2} \mathrm{CH}_{2}$ |  | S | thio | 0.10 |
| 10b | $\mathrm{NMeCOCH}=\mathrm{CH}$ |  | $\mathrm{CH}_{2} \mathrm{~S}$ | thio | 6.93 |
| 10c | $\mathrm{NMeCOCH}_{2} \mathrm{O}$ |  | S | thio | 0.040 |
| 10d | NMeCOMe | H | S | thio | 0.15, 0.070 |
| 10 e | NMeCOMe | H | $\mathrm{SO}_{2}$ | thio | 0.84 |
| 10 f | $\mathrm{NMeSO}_{2} \mathrm{Me}$ | H | S | thio | 0.16 |
| 10 g | $\mathrm{CH}_{2} \mathrm{CONE}_{2}$ | H | S | thio | 3.22 |
| 10h | $\mathrm{SO}_{2} \mathrm{NMe}_{2}$ | H | S | thio | 0.21 |
| 10i | COMe | H | S | thio | 0.60 |
| 10j | $\mathrm{CMe}=\mathrm{NOH}$ | H | S | thio | 0.040 |
| 10k | $\mathrm{CMe}=\mathrm{NOMe}$ | H | S | thio | 0.27 |
| (S)-10d | NMeCOMe | H | S | thio | 0.040, 0.037 |
| (R)-10d | NMeCOMe | H | S | thio | 1.18, 0.75 |
| (S)-10j | $\mathrm{CMe}=\mathrm{NOH}$ | H | S | thio | 0.040 |
| (S)-101 | $\mathrm{CMe}=\mathrm{NOCH}_{2} \mathrm{CN}$ | H | S | thio | 0.010 |
| (S)-10m | $\mathrm{CMe}=\mathrm{NOH}$ | H | $\mathrm{SO}_{2}$ | thio | 0.090 |
| (S)-10n | $\mathrm{CMe}=\mathrm{NOCH}_{2} \mathrm{CN}$ | H | $\mathrm{SO}_{2}$ | thio | 0.050 |
| (S)-100 | $\begin{gathered} \mathrm{CMe}=\mathrm{NOCH}_{2} \mathrm{CH}_{2}- \\ \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O} \end{gathered}$ | H | S | thio | 1.51 |
| (R)-11a | $\mathrm{NMeCOCH}_{2} \mathrm{CH}_{2}$ |  | S | thiaz | 0.060 |
| (R)-11b | NMeCOMe | H | S | thiaz | 0.070, 0.30 |
| (S)-11b | NMeCOMe | H | S | thiaz | 6.21 |
| (R)-11d | $\mathrm{CMe}=\mathrm{NOH}$ | H | S | thiaz | 0.13 |
| (R)-11e | $\mathrm{CMe}=\mathrm{NOH}$ | H | $\mathrm{SO}_{2}$ | thiaz | 0.20 |
| (R)-11f | $\mathrm{CMe}=\mathrm{NOCH}_{2} \mathrm{CN}$ | H | S | thiaz | 0.030 |
| (R)-11g | $\mathrm{CMe}=\mathrm{NOCH}_{2} \mathrm{CN}$ | H | $\mathrm{SO}_{2}$ | thiaz | 0.12 |
| (R)-11c | COMe | H | S | thiaz | 0.39 |

${ }^{a}$ Ref $9 .{ }^{b}$ thio $=2,4$-thiopheneyl; thiaz $=2,5$-thiazolyl. S or $\mathrm{SO}_{2}$ is appended to the 2-position of thiophene and thiazole rings. ${ }^{c} 95 \%$ confidence limits for $\mathrm{IC}_{50}$ values were $\pm 2.6$-fold.
but this change reduced potency considerably in vitro, and the compound was of no interest in vivo ( $\mathrm{ED}_{50}>1.5$ $\mathrm{mg} / \mathrm{kg} \mathrm{po}$ ).
Potency in the thiazole series paralleled in many respects that of the thiophene series. Thus, dihydro2 -quinolone ( $R$ )-11a, $N$-methylacetanilide ( $R$ )-11b, and oxime $(R)$-11d were all potent inhibitors in vitro. ( $R$ )11b has the same absolute configuration as ( $S$ )-10d and was 33 -fold more potent than ( $S$ )-11b in vitro. In common with the thiophene series, the cyanomethylated derivative ( $R$ )-11f was a potent inhibitor in vivo $\left(\mathrm{ED}_{50}\right.$ $0.5 \mathrm{mg} / \mathrm{kg}$ po); however, ( $R$ )-11b was less potent orally $\left(\mathrm{ED}_{50}>1.5 \mathrm{mg} / \mathrm{kg} \mathrm{po}\right.$ ) than its thiophene counterpart 10d.
An advantage of S-linking groups, over the $\mathrm{CH}_{2} \mathrm{O}$ of 1 , is that they allow conversion to sulfone, and this modification could lead to improved oral potency in two ways. Firstly, lowering lipophilicity relative to the sulfide would be expected to increase aqueous solubility. Secondly, placement of the electron-withdrawing $\mathrm{SO}_{2}$ group adjacent to the two aryl rings could provide these rings with some protection from possible oxidative metabolism. However, in this instance, although the sulfones of oximes and $O$-(cyanomethyl)oximes in the thiophene ( $(S)$-10m, $(S)$-10n) and thiazole $((R)$-11e, $(R)$ 11 g ) series were not significantly different from the corresponding sulfides ( $(S)$-10j, $(S)$-101; $(R)-11 d,(R)-11 f)$ in vitro, none of these compounds showed enhanced potency in vivo $\left(\mathrm{ED}_{50} \mathrm{~s}>1.5 \mathrm{mg} / \mathrm{kg} \mathrm{po}\right)$.
The thiophene acetanilide ( $S$ )-10d was chosen for evaluation alongside 1 in the rat air pouch assay but


Figure 1. Overlay generated in Sybyl using multifit of 1 (light gray) and (S)-10d (dark gray).
at the more discriminating time point of 10 h postdose. Tested in this way, $\mathbf{1}$ and $(S)$-10d showed $49 \%(p<0.01)$ and $70 \%(p<0.001)$ inhibition of $\mathrm{LTB}_{4}$ synthesis at 1.5 $\mathrm{mg} / \mathrm{kg}$ po, respectively.

Although at first sight the dioxolanes may appear to represent a departure from the $4-\mathrm{MeO}-\mathrm{THP}$ series, much of the structure-activity relationship (SAR) presented here indicates that the two series are indeed related. For example, all the features of the $4-\mathrm{MeO}-$ THP structures 2-8, when applied in the dioxolane series, have also provided potent inhibitors. One way of rationalizing these observations is depicted in Figure 1 , in which $(S)-\mathbf{1 0 d}$ has been modeled on 1 using the multifit algorithm provided in Sybyl. ${ }^{13}$ In this overlay, all the important structural elements ${ }^{14}$ of $4-\mathrm{MeO}-\mathrm{THPs}$ are matched in close spatial proximity by features
present in (S)-10d, viz. a tertiary benzylic carbon atom, a benzylic substituent ( OMe or Me ) providing conformational restriction or space filling, and ring oxygen atoms and amidic carbonyls available for H -bonding to the enzyme.

In conclusion, we have developed efficient asymmetric syntheses of thiophene- and thiazole-containing dioxolanes. The enantiomeric pairs $(R)-\mathbf{1 0 d},(S)-10 d$ and $(R)-11 \mathbf{b},(S)-11 b$ demonstrated enantioselective inhibition of LT biosynthesis. Enantioselective inhibition of LT biosynthesis remains rare, and this work provides further examples. This study extends earlier work on 5 LO -inhibiting dioxolanes ${ }^{15}$ and demonstrates that potency in vivo equal or superior to ZD2138 (1) is achievable with dioxolanes following oral administration. In particular, the dioxolane group offers an alternative pharmacophore to $4-\mathrm{MeO}-\mathrm{THP}$ for providing potent oral inhibitors of LT biosynthesis. One disappointing aspect of these newer dioxolanes was the difficulty of inducing target compounds to crystallize, even those exhibiting high ees. Lack of crystallinity complicates drug purification during manufacture, and for this reason, further preclinical work on (S)-10d was curtailed.

## Experimental Section

General. All reactions were performed in argon atmospheres. Organic extracts were dried over $\mathrm{MgSO}_{4}$ before evaporation in vacuo using rotary evaporators. $\mathrm{NH}_{4} \mathrm{Cl}$ refers

Table 2. Physical and Synthetic Data for Compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ and Key Intermediates

| no. | formula | anal. | $\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$ | $[\alpha]^{25} \mathrm{D}^{a} \mathrm{deg}$ | method (yield, \%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10a | $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}_{2}$ | CHN | oil |  | $\mathrm{A}^{\text {b }}$ (17) |
| 10b | $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}_{2} \cdot 0.25 \mathrm{DMF}$ | CHN | oil |  | $\mathrm{C}^{\text {c }}$ (87) |
| 10c | $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}_{2}$ | CHN | oil |  | $\mathrm{C}^{\text {d }}$ (14) |
| 10d | $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}_{2}$ | HN ; $\mathrm{C}^{e}$ | oil |  | C (89) |
| 10e | $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}_{2}{ }^{2} 0.6 \mathrm{Tol}$ | CHN | oil |  | F (80) |
| 10 f | $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}_{3} \cdot 0.2 \mathrm{Tol}$ | CHN | oil |  | C (54) |
| 10 g | $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}_{2}$ | HN; Cf | oil |  | C (51) |
| 10h | $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}_{3} \cdot 0.2 \mathrm{Tol}$ | CHN | oil |  | C (90) |
| 10 i | $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}_{2}$ | CHNS | oil |  | D (73); B (32) |
| 10j | $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}_{2}$ | HN; ${ }^{\text {g }}$ | oil |  | E (93) |
| 10k | $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}_{2}$ | HN; ${ }^{\text {d }}$ | oil |  | E (97) |
| (S)-10d | $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}_{2}$ | CHNS | oil | $+9.9(c=0.5)$ | C (90) |
| (R)-10d | $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}_{2}$ | CHNS | oil | $-10.9(c=0.5)$ | C (89) |
| (S)-100 | $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}_{2}$ | CHNS | oil |  | E (99) |
| (S)-10i | $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}_{2}$ | CHS | oil |  | D (71) |
| (S)-101 | $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ | CHNS | oil |  | G (82) |
| (S)-10m | $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}_{2}{ }^{-0.33 T o l}$ | CHN | oil |  | F (81) |
| (S)-10n | $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$ | CHNS | oil |  | F (72) |
| (S)-100 | $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$ | CHNS | oil |  | $\mathrm{G}^{i}(71)$ |
| (R)-11a | $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ | CHNS | oil |  | C (78) |
| (R)-11b | $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ | CHN | 77-78 | $-11.9(c=0.5)$ | C (72) |
| (S)-11b | $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ | CHNS | 76-77 | $+11.7(c=0.3)$ | C (70) |
| (R)-11c | $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}_{2}$ | HN; C ${ }^{\text {j }}$ | oil |  | D (76) |
| (R)-11d | $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ | CHNS | 75-78 |  | E (90) |
| (R)-11e | $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$ | CHNS | 154-156 |  | F (37) |
| (R)-11f | $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}$ | HN; ${ }^{\text {d }}$ | oil |  | G (94) |
| (R)-11g | $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 0.2 \mathrm{Tol}$ | CHN | oil |  | F (62) |
| 12 | $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ |  | liq |  | B (43) |
| (S)-15 | $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{2}$ | CHS | liq |  | $m$ |
| 19 | $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{2} \mathrm{~S}_{2}$ | CH; $\mathrm{Br}^{\text {l }}$ |  |  | A (78) |
| 21 | $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~S}_{2}$ | CH | oil |  | $m$ |
| 22 | $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$ | CH | 40-42 |  | $m$ |
| (S)-22 | $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$ | CHS | 72-74 | $+14.8(c=0.5)$ | $m$ |
| (R)-22 | $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$ | CHS | 73-74 | $-14.5(c=0.5)$ | $m$ |
| (S)-25 | $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}_{2}$ | CHN | 107-109 | -7.4 ( $c=0.2)$ | $m$ |
| (R)-25 | $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}_{2}$ | CHNS | 107-109 | $+7.0(c=0.3)$ | $m$ |
| 27 | $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}_{2}$ | CH | 120-122 |  | $m$ |

[^1]to a saturated aqueous solution. Chromatography refers to flash chromatography and was performed as described. ${ }^{16}$ Melting points are uncorrected.

Method A. 4-Bromo-2-(methylthio)thiophene (18). nBuLi ( $70 \mathrm{~mL}, 1.5 \mathrm{M}$ in hexanes, 0.105 mol ) was added dropwise to a stirred solution of 2,4-dibromothiophene ( $25 \mathrm{~g}, 0.014 \mathrm{~mol}$ ) in dry ether ( 400 mL ) at $-70^{\circ} \mathrm{C}$. After 0.5 h , dimethyl disulfide ( $10.4 \mathrm{~g}, 0.11 \mathrm{~mol}$ ) dissolved in ether ( 40 mL ) was added. The reaction mixture was held at $-70^{\circ} \mathrm{C}$ for 0.5 h , allowed to warm to $0^{\circ} \mathrm{C}$ over 2 h , and added to a mixture of $\mathrm{NH}_{4} \mathrm{Cl}$ and ice. The organic phase was separated, the aqueous phase was re-extracted with ether, and the combined ether solutions were washed with water and evaporated. Chromatography (hexanes) gave 18 as a colorless liquid ( $15.3 \mathrm{~g}, 70 \%$ ): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.2(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}), 2.5(\mathrm{~s}, 3 \mathrm{H})$.

Method B. 4-(2,3-Dihydroxyprop-2-yl)-2-(methylthio)thiophene (22). $n-\mathrm{BuLi}(16.6 \mathrm{~mL}, 1.5 \mathrm{M}$ in hexanes, 25 mmol ) was added dropwise to a stirred solution of $18(5.2 \mathrm{~g}, 25 \mathrm{mmol})$ dissolved in dry ether ( 150 mL ) at $-70^{\circ} \mathrm{C}$. After 1 h at -70 ${ }^{\circ} \mathrm{C}$, 1-hydroxypropan-2-one tetrahydropyran ether ( $4.3 \mathrm{~g}, 25$ mmol ) dissolved in ether ( 5 mL ) was added. The reaction mixture was kept at $-70^{\circ} \mathrm{C}$ for 1 h , allowed to warm to -30 ${ }^{\circ} \mathrm{C}$, and added to $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. The organic phase was separated, the aqueous phase was re-extracted with ether ( 2 $\times 50 \mathrm{~mL}$ ), and the combined ether solutions were washed with water and evaporated. Chromatography (EtOAc:hexanes, 30: 70) gave a clear oil ( 5.35 g ) which was dissolved in MeOH ( 20 mL ) and treated with $2 \mathrm{~N} \mathrm{HCl}(3 \mathrm{~mL})$ for $1.5 \mathrm{~h} . \mathrm{NaOH}(2 \mathrm{~N}$, 3.5 mL ) was added, MeOH evaporated, and the residue diluted with water and extracted with EtOAc. The extracts were washed with brine, evaporated, and chromatographed (EtOAc: hexanes, 1:1) to give 22 as an oil which slowly crystallized (3.08 $\mathrm{g}, 60 \%)$ : ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.2(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.0(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=11.7,5 \mathrm{~Hz}, 1 \mathrm{H}), 3.6$ (dd, $J=11.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 1 \mathrm{H}), 2.5(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{brt}, 1 \mathrm{H})$, $1.5(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / z(\mathrm{CI}) 205[(\mathrm{M}+\mathrm{H})+\mathrm{]}$.

2-(Methylthio)-4-(2,2,4-trimethyl-1,3-dioxolan-4-yl)thiophene (15). A solution of $22(1 \mathrm{~g}, 4.9 \mathrm{mmol}), 2,2-$ dimethoxypropane ( $1 \mathrm{~mL}, 8.2 \mathrm{mmol}$ ), and PTSA ( 10 mg ) in acetone ( 12 mL ) was refluxed for 0.75 h , cooled to room temperature, added to aqueous $\mathrm{NaHCO}_{3}$, and extracted with EtOAc. The extracts were washed with brine, evaporated, and chromatographed (EtOAc:hexanes, 5:95) to give 15 as a colorless liquid ( $0.97 \mathrm{~g}, 81 \%$ ): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}, 200 \mathrm{MHz}\right.$ ) $\delta 7.3(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.1(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{AB}$ pattern, 2 H ), 1.48 (s, 3 H ), $1.39(\mathrm{~s}, 3 \mathrm{H}), 1.32$ (s, 3 H ); MS (CI) $m / z 245\left[(\mathrm{M}+\mathrm{H})^{+}\right]$.

Bis(4-acetylphenyl) Disulfide (26). NaSMe ( $7.7 \mathrm{~g}, 0.11$ mol ) was added portionwise to a stirred solution of 4 -fluoroacetophenone ( $12 \mathrm{~mL}, 0.1 \mathrm{~mol}$ ) in DMA ( 50 mL ), maintaining the reaction temperature below $35^{\circ} \mathrm{C}$ with external ice cooling. The reaction mixture was stirred for 2 h and added to ice/ water. Solids were collected and dried at $50^{\circ} \mathrm{C}$ in vacuo to give 4 -(methylthio)acetophenone ( $15.44 \mathrm{~g}, 92 \%$ ). This material was dissolved in DMF ( 100 mL ) , $\mathrm{NaSMe}(15 \mathrm{~g}, 0.22 \mathrm{~mol}$ ) added, and the mixture heated at $150^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was cooled, added to a mixture of $3 \mathrm{~N} \mathrm{HCl}(120 \mathrm{~mL})$ and ice, and extracted with ether $(3 \times 50 \mathrm{~mL})$. The extracts were washed with brine and evaporated. The crude thiol dissolved in DMSO was left at room temperature for 18 h , added to ice/water ( 200 mL ), and extracted with EtOAc. The extracts were washed with brine, evaporated, and chromatographed (EtOAc:Tol, 10:90) to give 26 as a white solid ( 8.33 g , $73 \%$ ): ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.9(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H})$, $7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{~Hz}), 2.6(\mathrm{~s}, 6 \mathrm{H}) ; \mathrm{MS}$ (CI) $\mathrm{m} / \mathrm{z} 320[(\mathrm{M}+$ $\mathrm{NH}_{4}{ }^{+}$].
Bis[4-(2-methyl-1,3-dioxolan-2-yl)phenyl] Disulfide (27). A solution of $26(4.5 \mathrm{~g}, 15 \mathrm{mmol})$, ethylene glycol ( $5 \mathrm{~mL}, 90$ mmol ), triethyl orthoformate ( $10 \mathrm{~mL}, 60 \mathrm{mmol}$ ), and PTSA ( 250 mg ) in toluene ( 30 mL ) was heated at $60{ }^{\circ} \mathrm{C}$ for 3 h , cooled, diluted with EtOAc ( 100 mL ), and washed with aqueous $\mathrm{K}_{2}$ $\mathrm{CO}_{3}$ and brine. Evaporation and trituration with ether and hexanes gave white crystals which were collected and washed with hexanes to give $27(4.43 \mathrm{~g}, 76 \%)$; $\mathrm{mp} 126-128{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.45(\mathrm{~m}, 8 \mathrm{H}), 4.02(\mathrm{~m}, 4 \mathrm{H}), 3.75(\mathrm{~m}$, 4 H ), $1.62(\mathrm{~s}, 6 \mathrm{H})$; MS (CI) $\mathrm{m} / \mathrm{z} 391\left[(\mathrm{M}+\mathrm{H})^{+}\right]$.

Method C. $\quad N$-Methyl-4'-[[4-(2,2,4-trimethyl-1,3-diox-olan-4-yl)thien-2-yl]thio]acetanilide (10d). NaSMe ( 0.54 $\mathrm{g}, 7.7 \mathrm{mmol})$ and $15(0.54 \mathrm{~g}, 2.2 \mathrm{mmol})$ dissolved in dry DMF ( 5 mL ) were heated at $130^{\circ} \mathrm{C}$ for 0.5 h , cooled, and added to a mixture of dilute citric acid, ether, and ice. The organic phase was separated, the aqueous phase was re-extracted with ether, and the combined ether solutions were washed with brine and evaporated. The crude thiol was dissolved in DMF ( 5 mL ), $N$-methyl-4-iodoacetanilide ( $0.6 \mathrm{~g}, 2.2 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $0.41 \mathrm{~g}, 3 \mathrm{mmol}$ ), and $\mathrm{CuCl}(50 \mathrm{mg})$ were added, and the reaction mixture was stirred and heated at $130{ }^{\circ} \mathrm{C}$ for 2 h . After cooling, the reaction mixture was added to ice and aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with EtOAc. The extracts were evaporated and chromatographed (EtOAc:hexanes, $1: 1$ ) to give 10 d as a colorless oil ( $0.74 \mathrm{~g}, 89 \%$ ): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}, 200\right.$ $\mathrm{MHz}) \delta 7.65(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 7.27(\mathrm{AB}$ pattern, 4 H ), 4.0 ( AB pattern, 2 H ), $3.15(\mathrm{~s}, 3 \mathrm{H}), 1.8(\mathrm{br} \mathrm{s}, \mathrm{3H})$, $1.55(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$; MS (CI) $\mathrm{m} / \mathrm{z} 378$ [(M+ $\mathrm{H})^{+}$].

Method F. $N$-Methyl-4'-[[4-(2,2,4-trimethyl-1,3-diox-olan-4-yl)thien-2-yl]sulfonyl]acetanilide (10e). A solution of Oxone ( $50 \%, 300 \mathrm{mg}$ ) in water ( 2 mL ) containing sufficient NaOAc to bring to $\mathrm{pH} 5-6$ was added to a stirred solution of $10 \mathrm{~d}(130 \mathrm{mg}, 0.35 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$. After 4 h , the reaction mixture was added to water and extracted with EtOAc. The extracts were washed with brine, evaporated, and chromatographed (EtOAc:Tol, 75:25) to give $\mathbf{1 0 e}$ as a colorless oil ( $114 \mathrm{mg}, 80 \%$ ): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}, 200 \mathrm{MHz}\right) \delta 8.0(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.9(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.6(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.0(\mathrm{AB}$ pattern, 2 H$), 3.22(\mathrm{~s}$, 3 H ), 1.94 (s, 3H), 1.5 (s, 3H), $1.38(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$; MS (FAB) $m / z 410\left[(\mathrm{M}+\mathrm{H})^{+}\right]$.

Method D. $4^{\prime}$-[[4-(2,2,4-Trimethyl-1,3-dioxolan-4-yl)-thien-2-yllthiolacetophenone ( 10 i ). Crude thiol, prepared from $15(1 \mathrm{~g}, 4.1 \mathrm{mmol})$ as described in the preparation of 10 d , was dissolved in DMF ( 8 mL ), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.83 \mathrm{~g}, 6 \mathrm{mmol})$ and 4 -fluoroacetophenone ( $0.565 \mathrm{~g}, 4.1 \mathrm{mmol}$ ) were added, and the stirred reaction mixture was heated at $130^{\circ} \mathrm{C}$ for 1.5 h , cooled, added to ice/water, and extracted with EtOAc. The extracts were evaporated and chromatographed (EtOAc:hexanes, 15: 85) to give 10 i as a clear oil ( $1 \mathrm{~g}, 73 \%$ ): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right.$, $250 \mathrm{MHz}) \delta 7.9(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.7(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{AB}$ pattern, $2 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.4(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$; MS (CI) $\mathrm{m} / \mathrm{z} 349$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$.

Method E. $\quad 4^{\prime}$-[[4-(2,2,4-Trimethyl-1,3-dioxolan-4-yl)-thien-2-yl]thiolacetophenone oxime ( 10 j ). A solution of 10 i ( $400 \mathrm{mg}, 1.15 \mathrm{mmol}$ ), NaOAc ( $510 \mathrm{mg}, 6.3 \mathrm{mmol}$ ), and $\mathrm{NH}_{2}-$ $\mathrm{OH} \cdot \mathrm{HCl}(400 \mathrm{mg}, 5.75 \mathrm{~mL}$ ) in $\mathrm{EtOH}(5 \mathrm{~mL})$ was refluxed for 2 h, cooled, and evaporated. Water was added to the residue which was extracted with EtOAc. The extracts were evaporated and chromatographed (EtOAc:hexanes, 25:75) to give $\mathbf{1 0 j}$ as a colorless oil ( $390 \mathrm{mg}, 93 \%$ ): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}, 200\right.$ MHz ) $\delta 11.1(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.6(\mathrm{~d}, J=8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.4(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.2(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 4.0(\mathrm{AB}$ pattern, 2 H ), $2.15(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.4(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}$, 3 H ); MS (FAB) $m / z 362\left[(\mathrm{M}-\mathrm{H})^{-}\right]$.

2-(Methylthio)-4-(prop-1-en-2-yl)thiophene (21). $n$-BuLi ( 1.6 M in hexanes, $37 \mathrm{~mL}, 57 \mathrm{mmol}$ ) was added dropwise to a stirred suspension of $\mathrm{Ph}_{3} \mathrm{PMeBr}(21.4 \mathrm{~g}, 60 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ cooled in ice. After 1.5 h at room temperature, the ylide solution was recooled in ice and 4-acetyl-2-bromothiophene ( $11 \mathrm{~g}, 52.5 \mathrm{mmol}$ ) dissolved in THF ( 60 mL ) was added dropwise. The reaction mixture was kept at $10^{\circ} \mathrm{C}$ for 1 h and at room temperature for 2 h , added to $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with ether. The extracts were evaporated and chromatographed (hexanes) to give a colorless liquid ( 9 g ) which was converted, by the procedure used to prepare 18 , to $21(6.25 \mathrm{~g}$, $70 \%$ ): ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta 7.25(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.15(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.3(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 1 \mathrm{H}), 2.5(\mathrm{~s}, 3 \mathrm{H})$, $2.1(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(\mathrm{CI}) \mathrm{m} / \mathrm{z} 171\left[(\mathrm{M}+\mathrm{H})^{+}\right]$.

2-(Methylthio)-5-(prop-1-en-2-yl)thiazole (24). $n$-BuLi ( $1.55 \mathrm{M}, 60 \mathrm{~mL}, 92 \mathrm{mmol}$ ) and a solution of $23(10.8 \mathrm{~g}, 82$ mmol ) in ether ( 80 mL ) were added dropwise simultaneously to stirred ether $(200 \mathrm{~mL})$ cooled to $-10^{\circ} \mathrm{C}$. After 0.3 h , acetone ( $18.4 \mathrm{~mL}, 252 \mathrm{mmol}$ ) in ether ( 20 mL ) was added. After 3.5 h at $-10-0{ }^{\circ} \mathrm{C}$, the reaction mixture was added to $\mathrm{NH}_{4} \mathrm{Cl}$ and
ice. The organic phase was separated, the aqueous phase was re-extracted with ether, and the combined ether solutions were evaporated. Chromatography (EtOAc:hexanes, 40:60) gave a clear oil ( 13 g ) which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$, and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(16.9 \mathrm{~mL}, 0.14 \mathrm{~mol})$ was added. After 1 h at room temperature, the reaction mixture was added carefully to aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with ether, and the extracts were evaporated. Chromatography (EtOAc:hexanes, 6:94) gave 24 as a pale yellow oil ( $8.7 \mathrm{~g}, 62 \%$ ): ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$, $200 \mathrm{MHz}) \delta 7.5(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.0(\mathrm{Br} \mathrm{s}, 1 \mathrm{H}), 2.7(\mathrm{~s}, 3 \mathrm{H})$, 2.1 (br s, 3H); MS (CI) $m / z 172\left[(\mathrm{M}+\mathrm{H})^{+}\right.$].
(S)-4-(1,2-Dihydroxyprop-2-yl)-2-(methylthio)thiophene ((S)-22). A stirred suspension of AD -mix- $\alpha(25.2 \mathrm{~g})$ in $t-\mathrm{BuOH}(90 \mathrm{~mL})$ and water ( 90 mL ) was cooled to $0^{\circ} \mathrm{C}$ and 21 ( $3.1 \mathrm{~g}, 18.2 \mathrm{mmol}$ ) added. After 18 h at $0^{\circ} \mathrm{C}, \mathrm{Na}_{2} \mathrm{SO}_{3}(10 \mathrm{~g}, 80$ mmol ) was added. The reaction mixture was allowed to reach room temperature, added to water, and extracted with EtOAc. The extracts were evaporated and chromatographed (EtOAc: hexanes, $60: 40$ ) to give ( $S$ )-22 as a white crystalline solid ( 3.41 $\mathrm{g}, 92 \%$ ).
(R)-4-(1,2-Dihydroxyprop-2-yl)-2-(methylthio)thiophene ( $(\boldsymbol{R})-22)$. This was prepared as a white crystalline solid by the procedure used for the preparation of ( $S$ )-22 but substituting $A D-m i x-\beta$ for $A D-m i x-\alpha$ (yield $93 \%$ ).
(R)-5-(1,2-Dihydroxyprop-2-yl)-2-(methylthio)thiazole ( $(\boldsymbol{R})-25)$. This was prepared as a white crystalline solid by the procedure used for the preparation of ( $S$ )-22 but substituting 24 for 21 (yield $95 \%$ ): ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$ ) $\delta 7.45(\mathrm{~s}, 1 \mathrm{H}), 3.7(\mathrm{br}$ AB pattern, 2 H$), 3.0(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.68(\mathrm{~s}$, $3 \mathrm{H}), 2.35$ (br s, 3 H ), 1.6 ( $\mathrm{s}, 3 \mathrm{H}$ ).
(S)-5-(1,2-Dihydroxyprop-2-yl)-2-(methylthio)thiazole ( $(S)-25)$. This was prepared as a white crystalline solid by the procedure used for the preparation of $(R)-22$ but substituting 24 for 21 (yield $76 \%$ ).

Method G. (S)-4'-[[4-(2,2,4-Trimethyl-1,3-dioxolan-4-yl)thien-2-yl]thio]acetophenone $\boldsymbol{O}$-(Cyanomethyl)oxime ((S)-101). NaH ( $\mathbf{6 0 \%}$ dispersion in oil, $50 \mathrm{mg}, 1.26 \mathrm{mmol}$ ) was added to a solution of ( $\boldsymbol{S}$ ) -10 j ( $230 \mathrm{mg}, 0.63 \mathrm{mmol}$ ) in DMF (2 mL ), stirred for 1 h , and cooled in an ice bath and $\mathrm{BrCH}_{2} \mathrm{CN}$ ( $150 \mathrm{mg}, 1.26 \mathrm{mmol}$ ) dissolved in DMF ( 0.5 mL ) added. After 2.5 h , the reaction mixture was added to $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc, and the extracts were evaporated. Chromatography (EtOAc:Tol, 5:95) gave ( $\boldsymbol{S}$ )-10l as a colorless oil ( 208 mg , $82 \%$ ): ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CD}_{3} \mathrm{SOCD}_{3}, 200 \mathrm{MHz}\right) \delta 7.75(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.73$ (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}$, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.1(\mathrm{AB}$ pattern, 2 H$), 2.3(\mathrm{~s}, 3 \mathrm{H})$, $1.64(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(\mathrm{CI}) \mathrm{m} / z 403[(\mathrm{M}+$ $\mathrm{H}^{+}{ }^{+}$.

2-Bromo-4-(2,2,4-trimethyl-1,3-dioxolan-4-yl)thiophene (28). NBS ( $1.6 \mathrm{~g}, 9.0 \mathrm{mmol}$ ) was added to a stirred solution of $12(1.8 \mathrm{~g}, 9.0 \mathrm{mmol})$ in DMF ( 5 mL ) and AcOH ( 1 mL ) cooled in an ice bath. After 1.5 h , the reaction mixture was basified with aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with water, evaporated, and chromatographed (EtOAc:hexanes, 2.5:97.5) to remove the 2,3isomer, which was formed in similar yield, to give 28 as a colorless liquid ( $0.81 \mathrm{~g}, 32 \%$ ): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{~Hz}\right) \delta 7.08$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.0(\mathrm{AB}$ pattern, $2 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$.

Acknowledgment. We thank Dr. Geoff Bird for helpful discussions and provision of some synthetic intermediates, Mr. Peter McNally for ${ }^{1} \mathrm{H}$ NMR experiments with shift reagents, and Mr. Stuart Nicholson for aqueous stability studies.

## References

(1) Shaw, A.; Krell, R. D. Peptide leukotrienes: Current status of research. J. Med. Chem. 1991, 34, 1235-1242.
(2) McMillan, R. M.; Walker, E. R. H. Designing therapeutically effective 5-lipoxygenase inhibitors. Trends Pharm. Sci. 1992, 13, 323-330
(3) Crawley, G. C.; Dowell, R. I.; Edwards, P. N.; Foster, S. J.; McMillan, R. M.; Walker, E. R. H.; Waterson, D.; Bird, T. G. C.; Bruneau, P.; Girardeau, J.-M. Methoxytetrahydropyrans. A new series of selective and orally potent 5 -lipoxygenase inhibitors. J. Med. Chem. 1992, 35, 2600-2609.
(4) (a) Bruneau, P. A. R.; Crawley, G. C. Preparation of benzoxazinyltetrahydropyrans and related compounds as 5-lipoxygenase inhibitors. EP 462813, 1991. (b) Bruneau, P. A. R. Preparation of thioxoheterocycles as 5-lipoxygenase inhibitors. EP 466452, 1992. (c) Crawley, G. C.; Edwards, P. N. Preparation and formulation of quinoline derivatives as 5 -lipoxygenase inhibitors. EP 420511, 1991. (d) Edwards, P. N.; Bird, T. G. C. Preparation of 4-(aryloxyphenyl)-4-methoxytetrahydropyrans and analogs as 5-lipoxygenase inhibitors. EP 409413, 1991. (e) Ple, P. Preparation of pyran containing hydroxylamine derivatives as 5-lipoxygenase inhibitors. EP 555067, 1993. (f) Bird, T. G. C. Preparation of 4-[5-[(hetero)arylthio]-2-thienyl]-4-methoxytetrahydropyrans and analogs as 5-lipoxygenase inhibitors. EP 462812, 1991.
(5) Hamon, A. Preparation of cyclic ether derivatives as 5-lipoxygenase inhibitors. EP 375457, 1990.
(6) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.; Kwong, H.; Morikawa, K.; Wang, Z.; Xu, D.; Zhang, X. The osmium-catalysed asymmetric dihydroxylation: A new ligand class and a process improvement. J. Org. Chem. 1992, 57, 2768-2771.
(7) The diols $(S)$-i and $(R)$-ii were prepared by AD (ref 6 ) under identical conditions as those used to produce the enantiomers 22 and 25. $\mathrm{AD}-$ mix- $\alpha$ and $\mathrm{AD}-$ mix $-\beta$ gave ( $S$ )-i and ( $R$ )-ii, respectively. The ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $(S)$-i and $(R)$-ii in the presence of $(R)-(+)-1,1^{\prime}$-bi-2-naphthol (RBN) showed the following shifts, where $\Delta_{\alpha-\beta}=\delta_{\alpha}-\delta_{\beta}$ and the subscripts indicate the products of AD using AD -mix- $\alpha$ and AD -mix- $\beta$, respectively: $\mathrm{CH}_{2}$ ( AB pattern, lower field doublet) $\Delta_{\alpha-\beta} 7.2 \mathrm{~Hz}$; $\mathrm{MeC} \Delta_{\alpha-\beta}-5.2 \mathrm{~Hz} .22: \mathrm{CH}_{2} \Delta_{\alpha-\beta} 7.43 \mathrm{~Hz}, \mathrm{MeC} \Delta_{\alpha-\beta}-3.49$ Hz. 25: MeC $\Delta_{\alpha-\beta}-1.59 \mathrm{~Hz}$. These $\Delta_{\alpha-\beta}$ values correlate with those of $(S)$-i and $(R)$-ii and allow the absolute stereochemical assignments of 22 and 25 enantiomers as indicated in Scheme 3. Optical purities of 22 and 25 enantiomers were assessed using the shifts in the presence of RBN of the $\mathrm{CH}_{2}$ and $\mathrm{MeS}{ }^{1} \mathrm{H}$ NMR signals, respectively.


(8) Note the switch in $R S$ designation arising from changed priority upon applying the sequence rule to thiophene and thiazole diols.
(9) Throughout the discussion, resolved compounds are referred to with $R$ or $S$ prefixes whereas racemates are referred to without prefixes.
(10) Biological assays referred to in this paper are described in: McMillan, R. M.; Spruce, K. E.; Crawley, G. C.; Walker, E. R. H.; Foster, S. J. Pre-clinical pharmacology of ICI D2138, a potent orally-active non-redox inhibitor of 5-lipoxygenase. Br. J. Phar. macol. 1992, 107, 1042-1047.
(11) The half-life of 10 d in water at pH 2 and $25^{\circ} \mathrm{C}$ was measured as 4.1 h . The UV spectrum of the product was consistent with hydrolysis of the dioxolane ring. These data indicate that some hydrolysis of the dioxolane ring could be expected in rat stomach.
(12) Crawley, G. C.; Briggs, M. T.; Dowell, R. I.; Edwards, P. N.; Hamilton, P. M.; Kingston, J. F.; Oldham, K.; Waterson, D.; Whalley, D. P. 4-Methoxy-2-methyl-tetrahydropyrans: Chiral leukotriene biosynthesis inhibitors, related to ICI D2138, which display enantioselectivity. J. Med. Chem. 1993, 36, 295-296.
(13) Sybyl version 6.1, Tripos Assoc., St. Louis, MO 63144-2913.
(14) Lambert-van der Brempt, C.; Bruneau, P.; Lamorlette, M. A.; Foster, S. J. Conformational analysis of 5 -lipoxygenase inhibitors: Role of the substituents in chiral recognition and on the active conformations of the (methyoxyalky)thiazole and methoxytetrahydropyran series. J. Med. Chem. 1994, 37, 113-124.
(15) Although no data with broken cell preparations of 5-lipoxygenase are presented on compounds described in this paper, earlier work established that dioxolane derivatives inhibited 5LO. For example, iii inhibited 5LO from rat basophilic leukemia cells (ref 10 ) with an $\mathrm{IC}_{50}$ value of $0.011 \mu \mathrm{M}$.

(16) Still, W. C.; Kahn, M.; Mitra, A. A rapid chromatographic technique for preparative separations with moderate resolution. J. Org. Chem. 1978, 43, 2923-2925.

JM950313I


[^0]:    * Abstract published in Advance ACS Abstracts, September 1, 1995.

[^1]:    ${ }^{a}$ Recorded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. ${ }^{b}$ Prepared using bis-(3,4-dihydro-2-oxo-1-methylquinol-6-yl) disulfide (refs 4b,c) and 28. ${ }^{c}$ Prepared from the thiol generated from 15, 6-(bromomethyl)-1-methylquinol-2-one (ref 3), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ at room temperature. ${ }^{d}$ Prepared from 1-methyl6 -mercaptobenzoxazin-2-one (ref 4a) and 28. ${ }^{e} \mathrm{C}$ : calcd, 60.45 ; found, $60.0 .{ }^{f} \mathrm{C}$ : calcd, 62.97; found, 62.3. $g \mathrm{C}$ : calcd, 59.48 ; found, 60.0 . ${ }^{h} \mathrm{C}$ : calcd, 60.45 ; found, $59.9 .{ }^{i} N$-(2-Chloroethyl)morpholine used as alkylating agent. ${ }^{j} \mathrm{C}$ : calcd, 58.43; found, 57.9. ${ }^{k} \mathrm{C}$ : calcd, 56.55 ; found, 57.0. ${ }^{l} \mathrm{Br}$ : calcd, 22.37; found, 21.6. ${ }^{m}$ See the Experimental Section.

